Singular-hyperbolic attractors are chaotic

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4 N ov 2 00 5 SINGULAR - HYPERBOLIC ATTRACTORS ARE CHAOTIC

We prove that a singular-hyperbolic (or Lorenz-like) attractor of a 3-dimensional flow is chaotic, in two strong different senses. Firstly, the flow is expansive: if two points remain close for all times, possibly with time reparametrization, then their orbits coincide. Secondly, there exists a physical (or Sinai-Ruelle-Bowen) measure supported on the attractor whose ergodic basin covers a full...

متن کامل

The explosion of singular hyperbolic attractors

A singular hyperbolic attractor for flows is a partially hyperbolic at-tractor with singularities (hyperbolic ones) and volume expanding central direction [MPP1]. The geometric Lorenz attractor [GW] is an example of a singular hyperbolic attractor. In this paper we study the perturbations of singular hyperbolic attractors for three-dimensional flows. It is proved that any attractor obtained fro...

متن کامل

Topological dimension of singular - hyperbolic attractors

An attractor is a transitive set of a flow to which all positive orbit close to it converges. An attractor is singular-hyperbolic if it has singularities (all hyperbolic) and is partially hyperbolic with volume expanding central direction [16]. The geometric Lorenz attractor [6] is an example of a singular-hyperbolic attractor with topological dimension ≥ 2. We shall prove that all singular-hyp...

متن کامل

Omega-limit Sets Close to Singular-hyperbolic Attractors

We study the omega-limit sets ωX(x) in an isolating block U of a singular-hyperbolic attractor for three-dimensional vector fields X. We prove that for every vector field Y close to X the set {x ∈ U : ωY (x) contains a singularity} is residual in U . This is used to prove the persistence of singular-hyperbolic attractors with only one singularity as chain-transitive Lyapunov stable sets. These ...

متن کامل

How chaotic are strange nonchaotic attractors?

We show that the classic examples of quasi-periodically forced maps with strange nonchaotic attractors described by Grebogi et al and Herman in the mid-1980s have some chaotic properties. More precisely, we show that these systems exhibit sensitive dependence on initial conditions, both on the whole phase space and restricted to the attractor. The results also remain valid in more general class...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2008

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-08-04595-9